項目反応理論によるパラメータの推定手続き。 Baker, F.B. & Kim, S-H. (2004) Item response theory: parameter estimation techniques. Marcel Dekker Inc. にMLE法によるBasic Program があります。使えるかもしれないと、Delphiに書き直してみました。取りあえずは同じ計算結果がでます。しかし、このままでは汎用に使えません。(タダだから当たり前ですね)。 私の理解力では歯が立たない本ですが、頭のリハビリでbasicのプログラムをdelphi(pascal)に書き換えてみました。書き換えてみると、入力データを作るルーチンがないと現実には使えないことがわかりました。それで間に合わせに作ってみました。 プログラムは2-parameter logistic model で、項目ごとのパラメータの推定をします。解説によると、「the examinees have been grouped into 10 intervals with known ability levels, ..」とあります。それで、全項目の合計点を各サンプルごとに算出し、適当に10の得点範囲にして、計算ルーチンに渡します。もっと良い方法があるのでしょうが、わかりません。 豊田さんの「項目反応理論 入門編」の学力テスト1のデータから30変量を取り出し、2パラメータモデルの結果P.52 表4.2と比べてみたのですが、識別力が0.1程度食い違い、困難度はもっとと言う有様。豊田さんのは周辺最尤推定値、このプログラムはMLE。違って当たり前ですが。 方法が違うためか。パグのためか。10グループに分けたアルゴリズムがいい加減なためか、よくわかりません。もし、どなたか、MLE法のパラメータ推定プログラムをお持ちの方がいましたら、計算が合っているのか、教えてください。 --- 村上宣寛 (勤務先) 〒930-8555 富山市五福3190 富山大学教育学部学校心理学 TEL/FAX 076-445-6367 E-mail: murakami (at) edu.toyama-u.ac.jp HomePage:http://psycho01.edu.toyama-u.ac.jp/ { program to get maximum likelihood estimates of the slope and intercept parameters for a single item under a two parameter logistic icc model } procedure TfrmIRT.btnOKClick( Sender: TObject ); var data : array[ 1 .. 500, 1 ..30] of real; sum : array[ 1.. 500 ] of real; x, rk, fk : array[ 1 .. 10 ] of real; sfw, sfwv, sfwv2, sfwx, sfwxv, sfwx2, pai, dev, ph, w, v, dm, p1, p2, p3, p4, p5, p6, dcpt, da, cpt, a : real; item, nxl, maxit : integer; interval, min, max : real; procedure Initialize; begin title := '[ 項目反応理論 by F.B.Baker and S.-H.Kim( IRTPET ) ]'; start_time := TimeToStr( Time ); start_date := DateToStr( Date ); filename := Edit1.text; nxl := 10; cpt := 0; a :=1; maxit := 100; OpenPrinter; WriteLn( f1 ); WriteLn( f1, title ); WriteLn( f1 ); WriteLn( f1,'ファイル名:', filename ); WriteLn( f1 ); end; procedure InputData; var i : integer; s : real; dmy : array[ 1 .. 30 ] of real; begin AssignFile( f2, filename ); Reset( f2 ); ReadLn( f2, number_of_variables ); number_of_samples := 0; while not eof( f2 ) do begin for i := 1 to number_of_variables do begin Read( f2, dmy[ i ] ); end; ReadLn( f2 ); Inc( number_of_samples ); for i := 1 to number_of_variables do begin data[ number_of_samples, i ] := dmy [ i ]; end; // sum s := 0; for i := 1 to number_of_variables do begin s := s + dmy[ i ]; end; sum[ number_of_samples ] := s; end; CloseFile( f2 ); Write( f1,'サンプル数 =' ); WriteLn ( f1, number_of_samples : 8 ); end; procedure FindMinMax; var i : integer; begin for i := 1 to number_of_samples do begin if i = 1 then begin max := sum[ i ]; min := sum[ i ]; end; if min > sum[ i ] then begin min := sum[ i ]; end; if max < sum[ i ] then begin max := sum[ i ]; end; end; interval := Round( ( max - min )/ 10 ); end; // 合計得点の最小値と最大値を求め、適当に10の得点範囲に区分し、項目の正当数、被験者数を算出した。もっと良い方法はないか。 procedure CalculateFrequency; var i : integer; begin // initial values cpt := 0; a :=1; for i := 1 to 10 do begin rk[ i ] := 0; fk[ i ] := 0; end; for i := 1 to number_of_samples do begin if ( sum[ i ] >= min) and ( sum[ i ] <= min + interval ) then begin fk[ 1 ] := fk[ 1 ] + 1; rk[ 1 ] :=rk[ 1 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + interval ) and ( sum[ i ] <= min + 2 * interval ) then begin fk[ 2 ] := fk[ 2 ] + 1; rk[ 2 ] :=rk[ 2 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 2 *interval ) and ( sum[ i ] <= min + 3 * interval ) then begin fk[ 3 ] := fk[ 3 ] + 1; rk[ 3 ] :=rk[ 3 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 3 *interval ) and ( sum[ i ] <= min + 4 * interval ) then begin fk[ 4 ] := fk[ 4 ] + 1; rk[ 4 ] :=rk[ 4 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 4 *interval ) and ( sum[ i ] <= min + 5 * interval ) then begin fk[ 5 ] := fk[ 5 ] + 1; rk[ 5 ] :=rk[ 5 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 5 *interval ) and ( sum[ i ] <= min + 6 * interval ) then begin fk[ 6 ] := fk[ 6 ] + 1; rk[ 6 ] := rk[ 6 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 6 *interval ) and ( sum[ i ] <= min + 7 * interval ) then begin fk[ 7 ] := fk[ 7 ] + 1; rk[ 7 ] := rk[ 7 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 7 *interval ) and ( sum[ i ] <= min + 8 * interval ) then begin fk[ 8 ] := fk[ 8 ] + 1; rk[ 8 ] := rk[ 8 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 8 *interval ) and ( sum[ i ] <= min + 9 * interval ) then begin fk[ 9 ] := fk[ 9 ] + 1; rk[ 9 ] := rk[ 9 ] + data[ i , item ]; end; end; for i := 1 to number_of_samples do begin if ( sum[ i ] > min + 9 *interval ) then begin fk[ 10 ] := fk[ 10 ] + 1; rk[ 10 ] := rk[ 10 ] + data[ i , item ]; end; end; // for k=1 to nxl:read x(k):next k:rem read ability levels x[ 1 ] := -4.0000; x[ 2 ] := -3.1111; x[ 3 ] := -2.2222; x[ 4 ] := -1.3333; x[ 5 ] := -0.4444; x[ 6 ] := 0.4444; x[ 7 ] := 1.3333; x[ 8 ] := 2.2222; x[ 9 ] := 3.1111; x[ 10 ] := 4.0000; end; { //本に載っていたデータ。コメントアウトしてある procedure CalculateFrequency; begin cpt := 0; a :=1; // for k=1 to nxl:read x(k):next k:rem read ability levels x[ 1 ] := -4.0000; x[ 2 ] := -3.1111; x[ 3 ] := -2.2222; x[ 4 ] := -1.3333; x[ 5 ] := -0.4444; x[ 6 ] := 0.4444; x[ 7 ] := 1.3333; x[ 8 ] := 2.2222; x[ 9 ] := 3.1111; x[ 10 ] := 4.0000; // for k=1 to nxl:read rk(k):next k:rem read number correct responses rk[ 1 ] := 6; rk[ 2 ] := 17; rk[ 3 ] := 20; rk[ 4 ] := 34; rk[ 5 ] := 51; rk[ 6 ] := 68; rk[ 7 ] := 81; rk[ 8 ] := 90; rk[ 9 ] := 95; rk[ 10 ] :=97; // for k=1 to nxl:read fk(k):next k:rem read number at ability level fk[ 1 ] := 100; fk[ 2 ] := 100; fk[ 3 ] := 100; fk[ 4 ] := 100; fk[ 5 ] := 100; fk[ 6 ] := 100; fk[ 7 ] := 100; fk[ 8 ] := 100; fk[ 9 ] := 100; fk[ 10 ] :=100; end; } // パラメータ推定手続き procedure itembio; var nit, k :integer; begin for nit :=1 to maxit do begin sfw := 0; sfwv := 0; sfwv2 := 0; sfwx := 0; sfwxv := 0; sfwv2 := 0; sfwx2 :=0; for k := 1 to nxl do begin // theta loop if fk[ k ] <> 0 then begin pai := rk[ k ] / fk[ k ]; dev:= cpt + a * x[ k ]; ph := 1 / ( 1 + exp(-dev)); w := ph * ( 1 - ph ); if w >= 0.0000009 then begin v := ( pai - ph ) / w; p1 := fk[ k ] * w; p2 := p1 * v; p3 := p2 * v; p4 := p1 * x[ k ]; p5 := p4 * x[ k ]; p6 := p4 * v; sfw := sfw + p1; sfwv := sfwv + p2; sfwx := sfwx + p4; sfwxv:= sfwxv+ p6; sfwx2:= sfwx2 + p5; sfwv2:= sfwv2 + p3; end; end; end; if sfw > 0 then begin dm := sfw * sfwx2 - sfwx * sfwx; if dm >0.000099 then begin dcpt := ( sfwv * sfwx2 - sfwxv * sfwx ) / dm; da := ( sfw * sfwxv - sfwx * sfwv ) / dm; cpt := cpt + dcpt; a := a + da; if (abs(cpt) > 30 ) or (abs(a) > 20) then begin WriteLn( f1, 'out of bounds error ' ); exit; end; if (abs(dcpt)<=0.05) and (abs(da)<=0.05) then exit; end; // WriteLn( f1, 'reached maximum number of iterations' ); end; if sfw<=0 then WriteLn( f1, 'out of bounds error ' ); end; end; procedure OutputParameters; var df : integer; diff : real; begin WriteLn( f1 ); WriteLn( f1 ); diff := -cpt / a; df := nxl - 2; WriteLn( f1, 'item No.' , item :3 ); WriteLn( f1, 'intercept= ', cpt : 8: 4 ); WriteLn( f1, 'slope= ', a : 8 : 4 ); WriteLn( f1, 'a (discrimination) = ', a : 8 : 4 ); WriteLn( f1, 'b (difficulty) = ', diff : 8 : 4 ); WriteLn( f1, 'chi-square= ', sfwv2 : 8 : 4 ); WriteLn( f1, 'd.f.= ', df : 4 ); end; { { main } begin Initialize; InputData; FindMinMax; // 面倒だから全項目のパラメータを自動的に算出 for item := 1 to number_of_variables do begin CalculateFrequency; itembio; OutputParameters; end; JobInformation; WinExec( 'PrintOut', SW_SHOW ); Close; end; 豊田さんの学力1データ 30 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 実行結果 かなり食い違う。しかし、もっともらしい印象もある。 [ 項目反応理論 by F.B.Baker and S.-H.Kim( IRTPET ) ] ファイル名:C:\My_Programs\Toolbox\項目反応理論入門データ\gaku1-30.dat サンプル数 = 226 item 1 intercept= 1.0693 slope= 0.5245 a (discrimination) = 0.5245 b (difficulty) = -2.0387 chi-square= 6.3265 d.f.= 8 item 2 intercept= 0.8953 slope= 0.4362 a (discrimination) = 0.4362 b (difficulty) = -2.0523 chi-square= 8.5326 d.f.= 8 item 3 intercept= 2.0995 slope= 0.6808 a (discrimination) = 0.6808 b (difficulty) = -3.0840 chi-square= 2.3783 d.f.= 8 item 4 intercept= 1.7417 slope= 0.6660 a (discrimination) = 0.6660 b (difficulty) = -2.6151 chi-square= 4.1265 d.f.= 8 item 5 intercept= 0.3764 slope= 0.4797 a (discrimination) = 0.4797 b (difficulty) = -0.7845 chi-square= 6.7664 d.f.= 8 item 6 intercept= 1.4696 slope= 0.7027 a (discrimination) = 0.7027 b (difficulty) = -2.0914 chi-square= 9.8749 d.f.= 8 item 7 intercept= 2.0262 slope= 0.8669 a (discrimination) = 0.8669 b (difficulty) = -2.3373 chi-square= 4.3151 d.f.= 8 item 8 intercept= -0.7171 slope= 0.6843 a (discrimination) = 0.6843 b (difficulty) = 1.0479 chi-square= 5.5541 d.f.= 8 item 9 intercept= 2.1126 slope= 0.8707 a (discrimination) = 0.8707 b (difficulty) = -2.4263 chi-square= 4.3667 d.f.= 8 item 10 intercept= 1.1868 slope= 0.5550 a (discrimination) = 0.5550 b (difficulty) = -2.1382 chi-square= 19.1833 d.f.= 8 item 11 intercept= 1.2262 slope= 0.5218 a (discrimination) = 0.5218 b (difficulty) = -2.3500 chi-square= 5.8651 d.f.= 8 item 12 intercept= 2.8287 slope= 1.0596 a (discrimination) = 1.0596 b (difficulty) = -2.6697 chi-square= 8.1197 d.f.= 8 item 13 intercept= 2.5498 slope= 0.8848 a (discrimination) = 0.8848 b (difficulty) = -2.8819 chi-square= 10.7184 d.f.= 8 item 14 intercept= 0.8531 slope= 0.7043 a (discrimination) = 0.7043 b (difficulty) = -1.2114 chi-square= 7.8854 d.f.= 8 item 15 intercept= 0.9080 slope= 0.7137 a (discrimination) = 0.7137 b (difficulty) = -1.2722 chi-square= 12.0859 d.f.= 8 item 16 intercept= 0.1354 slope= 0.7543 a (discrimination) = 0.7543 b (difficulty) = -0.1795 chi-square= 5.8722 d.f.= 8 item 17 intercept= -0.5197 slope= 0.6504 a (discrimination) = 0.6504 b (difficulty) = 0.7990 chi-square= 9.9868 d.f.= 8 item 18 intercept= -0.9822 slope= 0.6896 a (discrimination) = 0.6896 b (difficulty) = 1.4243 chi-square= 7.3454 d.f.= 8 item 19 intercept= 1.0764 slope= 0.6718 a (discrimination) = 0.6718 b (difficulty) = -1.6023 chi-square= 9.4465 d.f.= 8 item 20 intercept= -0.2286 slope= 0.5476 a (discrimination) = 0.5476 b (difficulty) = 0.4175 chi-square= 6.2059 d.f.= 8 item 21 intercept= 0.5205 slope= 0.7810 a (discrimination) = 0.7810 b (difficulty) = -0.6664 chi-square= 8.4482 d.f.= 8 item 22 intercept= 0.8702 slope= 0.7548 a (discrimination) = 0.7548 b (difficulty) = -1.1528 chi-square= 11.6412 d.f.= 8 item 23 intercept= -0.0445 slope= 0.8769 a (discrimination) = 0.8769 b (difficulty) = 0.0507 chi-square= 6.5764 d.f.= 8 item 24 intercept= 0.0417 slope= 0.5467 a (discrimination) = 0.5467 b (difficulty) = -0.0763 chi-square= 24.8556 d.f.= 8 item 25 intercept= 2.0656 slope= 0.6895 a (discrimination) = 0.6895 b (difficulty) = -2.9958 chi-square= 3.3952 d.f.= 8 item 26 intercept= -1.4381 slope= 0.5352 a (discrimination) = 0.5352 b (difficulty) = 2.6870 chi-square= 4.7227 d.f.= 8 item 27 intercept= -0.6702 slope= 0.6832 a (discrimination) = 0.6832 b (difficulty) = 0.9809 chi-square= 19.2514 d.f.= 8 item 28 intercept= -0.3919 slope= 0.4705 a (discrimination) = 0.4705 b (difficulty) = 0.8330 chi-square= 0.5933 d.f.= 8 item 29 intercept= -0.9487 slope= 0.6749 a (discrimination) = 0.6749 b (difficulty) = 1.4058 chi-square= 10.4817 d.f.= 8 item 30 intercept= 0.8416 slope= 0.6685 a (discrimination) = 0.6685 b (difficulty) = -1.2589 chi-square= 4.5815 d.f.= 8 [ Job Information ] Date =2005/04/13 --- 2005/04/13 Time =13:58:29 --- 13:58:29
ここは心理学研究の基礎メーリングリストに投稿された過去の記事を掲載しているページです。