[fpr 2772] 項目反応理論によるパラメータの推定手続き。

村上宣寛

項目反応理論によるパラメータの推定手続き。


Baker, F.B. & Kim, S-H. (2004) Item response theory: parameter estimation techniques. Marcel Dekker Inc. にMLE法によるBasic Program があります。使えるかもしれないと、Delphiに書き直してみました。取りあえずは同じ計算結果がでます。しかし、このままでは汎用に使えません。(タダだから当たり前ですね)。

私の理解力では歯が立たない本ですが、頭のリハビリでbasicのプログラムをdelphi(pascal)に書き換えてみました。書き換えてみると、入力データを作るルーチンがないと現実には使えないことがわかりました。それで間に合わせに作ってみました。

プログラムは2-parameter logistic model で、項目ごとのパラメータの推定をします。解説によると、「the examinees have been grouped into 10 intervals with known ability levels, ..」とあります。それで、全項目の合計点を各サンプルごとに算出し、適当に10の得点範囲にして、計算ルーチンに渡します。もっと良い方法があるのでしょうが、わかりません。

豊田さんの「項目反応理論 入門編」の学力テスト1のデータから30変量を取り出し、2パラメータモデルの結果P.52 表4.2と比べてみたのですが、識別力が0.1程度食い違い、困難度はもっとと言う有様。豊田さんのは周辺最尤推定値、このプログラムはMLE。違って当たり前ですが。

方法が違うためか。パグのためか。10グループに分けたアルゴリズムがいい加減なためか、よくわかりません。もし、どなたか、MLE法のパラメータ推定プログラムをお持ちの方がいましたら、計算が合っているのか、教えてください。




---

村上宣寛 


(勤務先)
〒930-8555 富山市五福3190
富山大学教育学部学校心理学
TEL/FAX 076-445-6367
E-mail: murakami (at) edu.toyama-u.ac.jp
HomePage:http://psycho01.edu.toyama-u.ac.jp/


 { program to get maximum likelihood estimates of the
   slope and intercept parameters for a single item
   under a two parameter logistic icc model  }



procedure TfrmIRT.btnOKClick( Sender: TObject );

var
  data    : array[ 1 .. 500, 1 ..30] of real;
  sum     : array[ 1.. 500 ] of real;
  x,
  rk,
  fk  : array[ 1 .. 10 ] of real;

  sfw, sfwv, sfwv2, sfwx, sfwxv,  sfwx2,
  pai, dev, ph, w, v, dm,
  p1, p2, p3, p4, p5, p6,
  dcpt, da, cpt, a : real;
  item,
  nxl,
  maxit : integer;
  interval,  min, max  : real;



  procedure Initialize;

  begin

    title := '[ 項目反応理論 by F.B.Baker and S.-H.Kim( IRTPET ) ]';
    start_time := TimeToStr( Time );
    start_date := DateToStr( Date );
    filename   := Edit1.text;
    nxl := 10;
    cpt := 0;
    a :=1;
    maxit := 100;
    OpenPrinter;
    WriteLn( f1 );
    WriteLn( f1, title );
    WriteLn( f1 );
    WriteLn( f1,'ファイル名:', filename );
    WriteLn( f1 );
   end;


  procedure  InputData;
  var
    i   : integer;
    s : real;
    dmy      : array[ 1 .. 30 ] of real;

  begin
    AssignFile( f2, filename );
    Reset( f2 );
    ReadLn( f2, number_of_variables );
 
    number_of_samples := 0;
    while not eof( f2 ) do begin
      for i := 1 to number_of_variables do begin
        Read( f2, dmy[ i ] );
      end;
      ReadLn( f2 );
      Inc( number_of_samples );
      for i := 1 to number_of_variables do begin
        data[ number_of_samples, i ] := dmy [ i ];
      end;
      // sum
      s := 0;
      for i := 1 to number_of_variables do begin
        s := s + dmy[ i ];
      end;
      sum[ number_of_samples ] := s;
    end;
    CloseFile( f2 );
    Write( f1,'サンプル数 =' );
    WriteLn ( f1, number_of_samples : 8 );
  end;


  procedure FindMinMax;
  var
    i      : integer;
  begin
    for i := 1 to number_of_samples do begin
      if i = 1 then begin
        max := sum[ i ];
        min := sum[ i ];
      end;
      if min > sum[ i ] then begin
        min := sum[ i ];
      end;
      if max < sum[ i ] then begin
        max := sum[ i ];
      end;
    end;
    interval := Round( ( max - min )/ 10 );
  end;



//  合計得点の最小値と最大値を求め、適当に10の得点範囲に区分し、項目の正当数、被験者数を算出した。もっと良い方法はないか。

  procedure CalculateFrequency;
  var
    i      : integer;
  begin
  // initial values
    cpt := 0;
    a :=1;

    for i := 1 to 10 do begin
      rk[ i ] := 0;
      fk[ i ] := 0;
    end;


    for i := 1 to number_of_samples do begin
      if ( sum[ i ] >= min) and ( sum[ i ] <= min + interval ) then begin
        fk[ 1 ] := fk[ 1 ] + 1;
        rk[ 1 ] :=rk[ 1 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + interval ) and ( sum[ i ] <= min + 2 * interval ) then begin
        fk[ 2 ] := fk[ 2 ] + 1;
        rk[ 2 ] :=rk[ 2 ] + data[ i , item ];
      end;
    end;


    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 2 *interval ) and ( sum[ i ] <= min + 3 * interval ) then begin
        fk[ 3 ] := fk[ 3 ] + 1;
        rk[ 3 ] :=rk[ 3 ] + data[ i , item ];
      end;
    end;


    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 3 *interval ) and ( sum[ i ] <= min + 4 * interval ) then begin
        fk[ 4 ] := fk[ 4 ] + 1;
        rk[ 4 ] :=rk[ 4 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 4 *interval ) and ( sum[ i ] <= min + 5 * interval ) then begin
        fk[ 5 ] := fk[ 5 ] + 1;
        rk[ 5 ] :=rk[ 5 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 5 *interval ) and ( sum[ i ] <= min + 6 * interval ) then begin
        fk[ 6 ] := fk[ 6 ] + 1;
        rk[ 6 ] := rk[ 6 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 6 *interval ) and ( sum[ i ] <= min + 7 * interval ) then begin
        fk[ 7 ] := fk[ 7 ] + 1;
        rk[ 7 ] := rk[ 7 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 7 *interval ) and ( sum[ i ] <= min + 8 * interval ) then begin
        fk[ 8 ] := fk[ 8 ] + 1;
        rk[ 8 ] := rk[ 8 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 8 *interval ) and ( sum[ i ] <= min + 9 * interval ) then begin
        fk[ 9 ] := fk[ 9 ] + 1;
        rk[ 9 ] := rk[ 9 ] + data[ i , item ];
      end;
    end;

    for i := 1 to number_of_samples do begin
     if ( sum[ i ] > min + 9 *interval ) then begin
        fk[ 10 ] := fk[ 10 ] + 1;
        rk[ 10 ] := rk[ 10 ] + data[ i , item ];
      end;
    end;
    
   // for k=1 to nxl:read x(k):next k:rem read ability levels

    x[ 1 ] := -4.0000;
    x[ 2 ] := -3.1111;
    x[ 3 ] := -2.2222;
    x[ 4 ] := -1.3333;
    x[ 5 ] := -0.4444;
    x[ 6 ] := 0.4444;
    x[ 7 ] := 1.3333;
    x[ 8 ] := 2.2222;
    x[ 9 ] := 3.1111;
    x[ 10 ] := 4.0000;



  end;

  {
  
  //本に載っていたデータ。コメントアウトしてある


  procedure  CalculateFrequency;
  begin
    cpt := 0;
    a :=1;

    // for k=1 to nxl:read x(k):next k:rem read ability levels

    x[ 1 ] := -4.0000;
    x[ 2 ] := -3.1111;
    x[ 3 ] := -2.2222;
    x[ 4 ] := -1.3333;
    x[ 5 ] := -0.4444;
    x[ 6 ] := 0.4444;
    x[ 7 ] := 1.3333;
    x[ 8 ] := 2.2222;
    x[ 9 ] := 3.1111;
    x[ 10 ] := 4.0000;


    // for k=1 to nxl:read rk(k):next k:rem read number correct responses

    rk[ 1 ] := 6;
    rk[ 2 ] := 17;
    rk[ 3 ] := 20;
    rk[ 4 ] := 34;
    rk[ 5 ] := 51;
    rk[ 6 ] := 68;
    rk[ 7 ] := 81;
    rk[ 8 ] := 90;
    rk[ 9 ] := 95;
    rk[ 10 ] :=97;

    // for k=1 to nxl:read fk(k):next k:rem read number at ability level

    fk[ 1 ] := 100;
    fk[ 2 ] := 100;
    fk[ 3 ] := 100;
    fk[ 4 ] := 100;
    fk[ 5 ] := 100;
    fk[ 6 ] := 100;
    fk[ 7 ] := 100;
    fk[ 8 ] := 100;
    fk[ 9 ] := 100;
    fk[ 10 ] :=100;


  end;
    }



 // パラメータ推定手続き


  procedure itembio;
  var
    nit, k  :integer;
  begin
    for nit :=1 to maxit do begin
      sfw := 0; sfwv := 0; sfwv2 := 0; sfwx := 0; sfwxv := 0; sfwv2 := 0; sfwx2 :=0;
        for k := 1 to nxl do begin // theta loop
          if fk[ k ] <> 0 then begin
            pai := rk[ k ] / fk[ k ];
            dev:= cpt + a * x[ k ];
            ph := 1 / ( 1 + exp(-dev));
            w := ph * ( 1 - ph );
            if w >= 0.0000009 then begin
              v := ( pai - ph ) / w;
              p1 := fk[ k ] * w;
              p2 := p1 * v;
              p3 := p2 * v;
              p4 := p1 * x[ k ];
              p5 := p4 * x[ k ];
              p6 := p4 * v;
              sfw  := sfw + p1;
              sfwv := sfwv + p2;
              sfwx := sfwx + p4;
              sfwxv:= sfwxv+ p6;
              sfwx2:= sfwx2 + p5;
              sfwv2:= sfwv2 + p3;
            end;
         end;
       end;

     if sfw > 0 then begin
       dm := sfw * sfwx2 - sfwx * sfwx;
       if dm >0.000099 then begin
         dcpt := ( sfwv * sfwx2 - sfwxv * sfwx ) / dm;
         da   := ( sfw * sfwxv - sfwx * sfwv ) / dm;
         cpt  := cpt + dcpt;
         a    := a + da;
         if (abs(cpt) > 30 ) or (abs(a) > 20) then begin
           WriteLn( f1,  'out of bounds error ' );
           exit;
         end;
         if (abs(dcpt)<=0.05) and (abs(da)<=0.05) then exit;
       end;
     // WriteLn( f1, 'reached maximum number of iterations' );
     end;
     if sfw<=0 then WriteLn( f1,  'out of bounds error ' );

   end;
  end;




  procedure OutputParameters;
  var
    df   : integer;
    diff : real;

  begin
    WriteLn( f1 );
    WriteLn( f1 );
    diff := -cpt / a;
    df   := nxl - 2;
    WriteLn( f1, 'item No.' , item :3 );
    WriteLn( f1, 'intercept= ', cpt : 8: 4 );
    WriteLn( f1, 'slope= ', a : 8 : 4 );
    WriteLn( f1, 'a (discrimination) = ', a : 8 : 4 );
    WriteLn( f1, 'b (difficulty) = ', diff : 8 : 4 );
    WriteLn( f1, 'chi-square= ', sfwv2 : 8 : 4 );
    WriteLn( f1, 'd.f.= ', df : 4 );
  end;

  {


{ main }
begin
  Initialize;
  InputData;
  FindMinMax;
  // 面倒だから全項目のパラメータを自動的に算出
  for item := 1 to number_of_variables do begin
    CalculateFrequency;
    itembio;
    OutputParameters;
  end;
  JobInformation;
  WinExec( 'PrintOut', SW_SHOW );
  Close;
end;

豊田さんの学力1データ

  30
1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  0  1  0  1  1  0  1  
0  1  1  0  1  1  1  0  0  0  1  1  1  1  0  0  0  0  0  1  0  1  1  1  1  0  0  1  0  1  
0  0  1  1  1  1  1  0  1  1  0  1  1  0  1  1  1  0  1  0  1  0  0  0  1  0  1  0  0  1  
1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  1  0  0  1  1  1  0  1  1  1  1  1  1  1  0  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  0  0  1  1  0  1  1  1  1  0  0  0  0  1  
0  0  1  0  0  0  0  0  1  1  1  0  1  0  0  0  1  0  0  0  1  1  1  1  1  0  0  0  0  0  
1  1  1  1  0  1  1  0  1  1  1  1  1  0  1  1  0  1  1  1  1  1  1  1  1  1  1  1  0  1  
1  1  1  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  0  0  1  1  1  
1  1  1  1  0  1  0  0  1  0  0  0  1  0  1  0  0  0  1  1  0  1  0  0  1  1  0  0  0  0  
1  1  1  1  1  1  1  0  1  1  0  0  1  1  1  1  1  1  1  1  1  1  1  0  1  0  0  0  1  1  
1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  0  0  1  1  0  1  0  0  1  0  0  1  1  1  
0  1  1  1  1  1  1  1  1  1  1  0  0  0  1  0  0  0  0  0  0  0  0  0  1  0  0  0  0  1  
1  0  1  1  1  1  0  0  0  1  1  1  0  1  1  1  0  0  1  1  0  1  1  1  1  0  1  0  0  0  
1  1  1  0  1  1  1  0  1  0  1  1  1  1  0  1  0  0  1  0  1  1  1  1  1  1  1  0  1  0  
1  0  0  1  1  1  0  0  1  1  0  1  1  1  1  1  0  0  1  0  0  0  1  0  0  0  1  0  0  0  
1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  0  1  1  0  1  0  1  0  1  1  0  1  
1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  1  1  1  0  1  0  1  0  0  0  0  1  
1  1  0  1  0  1  0  0  1  1  0  1  1  0  0  0  0  0  0  1  0  1  1  0  1  0  1  1  0  1  
1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  0  0  0  0  1  
1  0  1  1  0  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  1  1  0  1  1  0  1  1  1  0  1  0  0  0  0  0  0  0  0  1  0  0  0  0  1  
0  1  1  1  0  0  1  1  1  0  1  1  1  1  1  1  1  0  1  0  0  1  0  1  1  0  1  1  0  0  
1  0  1  1  1  1  1  0  1  1  0  0  1  0  0  0  0  0  0  0  1  1  0  0  0  1  0  0  0  0  
1  1  1  1  1  0  1  0  1  0  1  1  1  1  0  0  0  0  1  0  1  1  0  0  1  0  0  0  1  1  
1  1  1  0  0  0  1  0  1  1  1  1  1  1  1  0  0  0  0  0  1  0  0  0  1  0  0  1  1  1  
0  1  1  1  1  1  1  0  1  1  1  1  1  1  0  0  0  0  1  1  1  1  0  0  1  1  0  1  1  0  
1  0  0  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  1  0  0  
1  1  0  1  1  1  1  0  1  1  0  1  1  0  1  1  0  0  1  0  0  1  1  1  1  0  1  1  1  1  
1  1  1  0  1  1  1  0  1  0  1  1  1  1  1  1  0  0  1  1  0  0  0  0  1  0  0  1  0  1  
1  1  1  1  1  1  1  1  0  0  1  1  1  0  1  1  0  0  1  1  1  1  0  1  1  0  0  0  0  1  
0  1  1  1  0  1  1  0  1  0  1  1  0  1  1  1  0  0  0  0  0  0  1  0  1  0  1  0  0  0  
1  0  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  1  1  1  1  
1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  1  1  1  1  1  0  1  0  0  1  
0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  0  1  1  0  1  1  1  1  1  0  0  1  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  0  0  1  0  0  1  1  1  0  0  1  1  0  0  0  0  1  
0  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  0  0  1  0  1  1  1  1  1  1  0  0  0  1  
1  0  1  1  0  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  
0  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  1  0  1  1  1  0  1  0  1  1  1  1  
1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  0  0  0  0  1  0  0  1  0  0  
1  0  1  1  0  0  1  1  1  1  1  1  1  1  0  1  0  0  1  1  0  1  1  1  1  0  0  1  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  0  0  1  1  1  1  1  1  0  1  0  1  1  
0  0  1  1  1  1  1  0  1  0  1  1  1  0  1  1  0  0  1  1  1  1  0  0  1  0  0  0  1  0  
0  0  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  0  1  1  
0  0  1  1  0  1  1  1  1  1  1  1  1  0  1  1  1  1  1  0  1  1  1  1  1  0  0  0  0  0  
1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  1  1  1  
1  0  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  0  0  1  0  0  1  0  0  0  0  0  1  0  
0  1  1  1  1  0  1  1  1  1  1  1  1  1  1  0  0  0  1  1  0  0  1  1  0  0  1  1  0  0  
1  1  1  0  1  0  1  0  1  1  1  1  1  1  0  0  0  1  1  0  1  0  0  1  1  0  0  0  0  0  
1  0  0  1  0  1  1  0  1  1  0  1  1  0  1  1  1  0  1  0  1  1  1  1  1  0  0  0  1  1  
1  0  1  1  0  1  1  1  1  1  0  1  1  0  1  0  0  0  0  0  1  1  1  1  1  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  1  1  1  1  1  1  1  0  1  1  1  1  
0  0  1  1  0  1  1  0  1  1  1  1  1  0  0  0  0  1  1  0  1  1  0  1  1  0  0  0  0  1  
0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  0  1  0  1  1  0  0  1  0  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  1  0  1  1  0  1  0  1  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  0  1  0  0  0  1  0  1  1  1  
0  1  1  0  1  1  1  0  1  1  0  1  1  1  1  0  0  0  1  1  0  1  1  1  1  0  1  1  0  0  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  
1  1  1  1  1  1  1  0  1  1  0  1  1  0  0  1  0  1  1  1  1  1  0  0  0  0  0  1  0  1  
1  1  1  1  0  1  1  0  1  0  0  0  0  1  0  1  0  0  0  0  0  1  0  0  1  0  1  1  0  1  
1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  0  0  0  1  0  0  0  0  1  
0  1  0  1  0  1  1  0  0  1  0  1  1  1  1  0  0  0  1  1  1  1  0  0  1  0  0  1  0  1  
1  1  1  1  0  0  1  0  0  0  1  1  0  1  0  0  0  0  1  0  0  1  0  0  1  0  0  1  0  0  
1  0  1  1  0  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
0  1  1  0  0  0  1  1  0  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  
1  1  1  0  1  1  1  0  1  1  1  1  1  1  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  1  
0  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  1  1  1  0  1  1  0  0  1  1  0  
0  1  1  0  1  1  1  0  1  1  1  1  1  0  0  1  0  0  1  0  1  1  1  1  1  1  0  1  1  1  
1  0  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  1  1  1  1  1  0  0  1  0  0  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  0  0  0  0  1  0  1  1  1  1  1  0  0  0  0  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  0  1  
1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  1  1  1  1  
1  1  0  1  1  1  1  0  1  1  1  1  1  1  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  1  
1  0  1  0  0  1  1  0  1  1  0  0  0  1  1  1  0  1  1  1  0  0  0  1  1  0  0  1  0  1  
1  1  1  1  1  1  1  0  1  0  0  1  1  1  1  0  0  0  1  1  1  0  0  0  0  0  1  0  0  1  
1  1  0  1  1  1  1  0  1  0  1  1  1  1  1  0  1  1  1  1  1  0  0  0  1  0  0  0  1  1  
1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  1  0  0  0  1  1  1  0  1  1  
0  1  1  0  0  1  1  0  1  1  0  1  1  0  1  0  0  0  1  0  0  0  1  1  0  0  0  0  0  0  
1  1  1  1  0  0  1  0  1  1  1  1  1  0  1  1  0  0  1  0  1  1  1  1  1  1  0  1  0  1  
1  0  1  1  0  1  0  0  0  0  1  1  0  1  1  1  0  0  1  0  0  1  0  1  0  1  0  0  0  0  
0  1  1  1  0  1  0  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  1  0  1  1  1  1  
1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  0  0  0  1  1  1  1  1  1  1  1  0  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  0  0  1  0  0  0  1  1  
0  0  1  1  0  1  1  0  1  1  1  1  1  0  0  0  0  0  1  0  1  1  1  1  1  1  1  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  1  1  
1  0  0  1  0  0  0  0  0  0  1  1  1  0  0  0  1  0  0  1  0  0  0  1  0  0  1  0  0  0  
1  0  1  0  1  1  1  0  1  1  1  1  1  1  1  1  1  0  1  0  0  0  1  0  1  0  0  0  0  1  
0  1  1  0  1  1  1  0  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  1  0  0  0  0  1  
1  1  1  0  0  0  1  0  1  1  1  1  1  1  1  0  1  1  1  1  1  0  1  0  1  0  1  0  0  0  
1  1  1  1  1  0  1  0  1  0  1  1  1  0  0  0  0  0  1  0  1  1  0  0  0  1  1  0  1  0  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  
0  0  1  1  1  0  1  0  1  1  1  1  1  0  1  1  0  0  0  0  1  1  0  0  1  0  0  0  0  0  
1  1  1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  1  
1  1  0  0  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  0  1  0  1  
1  0  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  
1  1  1  1  0  1  1  0  1  1  1  1  1  0  1  1  1  0  1  0  1  1  1  1  1  0  1  1  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  0  1  1  1  1  1  1  0  1  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  0  1  1  1  1  0  0  0  0  1  
1  1  1  1  0  1  1  1  0  1  0  1  1  0  1  0  0  0  0  0  1  1  1  1  1  0  0  1  0  0  
0  1  0  0  1  1  1  1  1  1  1  1  1  0  1  0  0  0  0  1  0  1  0  0  1  1  0  0  1  0  
1  1  1  1  0  1  0  0  1  0  1  1  1  1  1  1  0  1  1  0  1  1  0  1  1  0  0  1  0  1  
0  1  1  1  1  1  1  0  1  1  1  1  1  0  0  0  0  1  1  0  0  1  0  0  1  0  0  0  0  1  
0  1  1  1  1  1  0  0  0  0  1  1  1  0  0  0  0  0  0  0  1  0  0  0  1  1  0  1  0  1  
0  1  1  1  0  1  1  0  0  1  0  1  1  1  1  1  1  0  1  1  0  0  1  0  1  0  0  0  0  1  
0  1  0  1  1  1  1  0  1  1  1  1  1  1  0  1  0  0  1  1  1  0  0  0  0  0  0  1  0  1  
1  1  0  1  1  1  1  1  1  1  1  0  1  1  1  1  0  0  1  1  0  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  0  1  0  1  1  1  1  1  0  1  0  0  1  
1  1  0  0  0  0  1  0  0  1  0  0  1  1  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  
0  1  0  0  0  1  1  0  1  1  1  1  1  1  0  1  0  0  1  1  1  1  0  0  0  0  1  0  0  0  
1  1  1  1  1  0  1  0  1  0  0  1  1  0  1  1  1  0  1  0  0  1  1  1  1  0  1  0  1  1  
1  0  0  1  0  1  1  0  1  1  1  1  1  0  1  0  0  0  1  1  1  1  1  1  1  1  0  1  0  1  
1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  1  0  0  1  0  1  1  0  0  1  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  0  1  1  1  0  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  1  
1  1  1  1  1  1  0  0  1  0  1  1  1  0  0  0  0  0  1  0  0  1  0  1  1  0  0  0  0  0  
1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  0  0  1  0  0  0  1  1  
0  1  1  1  0  1  1  1  1  1  0  1  1  1  0  1  1  0  1  0  1  1  1  1  1  0  1  1  0  1  
0  1  0  1  0  1  1  0  0  1  1  1  0  0  0  1  0  0  1  0  0  1  0  1  0  0  0  0  0  1  
1  0  1  1  0  1  1  1  1  1  0  1  1  0  1  0  0  0  0  0  1  1  1  1  1  0  0  0  0  1  
0  0  0  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  1  1  0  0  1  0  0  0  0  0  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  0  0  1  1  1  1  1  0  1  1  1  
0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  1  0  1  0  1  0  0  1  
1  1  1  1  1  0  1  1  1  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  0  1  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  
1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  0  1  1  0  0  1  1  1  1  0  1  1  0  0  
1  1  1  1  0  1  1  0  1  1  1  1  1  1  1  0  0  0  1  1  1  1  0  0  1  1  1  1  1  1  
1  0  1  1  0  1  1  0  1  1  0  1  0  0  1  0  0  0  1  0  0  1  1  1  1  0  0  0  1  0  
0  1  1  1  1  0  1  0  1  0  1  1  1  0  1  1  1  0  0  0  0  1  0  0  1  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  0  0  0  1  1  1  1  1  0  1  0  0  1  0  0  1  0  1  1  0  0  
1  0  1  1  1  1  1  0  1  0  0  1  1  0  0  0  0  0  0  0  0  1  0  0  1  0  1  0  0  1  
1  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  1  0  1  0  0  1  1  1  1  1  0  0  0  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  
1  0  0  1  0  0  1  0  1  1  1  1  1  0  0  0  1  0  0  1  0  1  1  1  1  0  0  1  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  0  0  0  0  1  0  1  0  1  
1  1  0  0  1  1  1  0  1  1  1  1  1  1  0  0  0  0  1  0  0  1  1  1  1  0  0  0  0  0  
0  0  1  1  0  1  1  1  1  1  0  1  1  0  1  0  0  0  1  1  1  1  0  0  1  0  0  1  0  1  
1  0  1  0  1  0  0  0  0  1  1  1  1  1  1  1  0  0  0  0  1  0  0  0  0  0  0  1  0  0  
1  1  1  1  0  1  1  1  1  1  0  1  1  1  1  0  0  0  1  1  1  1  1  1  1  0  0  1  1  1  
1  1  1  0  1  0  0  0  1  0  1  1  0  0  1  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  
1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  1  0  1  1  0  0  0  0  1  
1  0  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  0  1  0  0  0  1  0  1  
1  1  1  1  1  0  1  0  1  1  1  1  1  1  0  1  0  0  1  1  0  1  0  0  1  0  0  0  0  1  
1  1  1  0  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  0  1  0  0  1  0  1  
1  0  1  1  0  1  1  0  1  1  0  1  1  1  0  0  0  0  1  1  1  1  0  0  1  0  1  0  0  1  
1  1  1  1  0  0  1  0  0  1  1  1  1  1  1  0  0  1  1  1  1  1  1  1  1  1  0  0  1  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  0  1  1  0  0  1  0  1  1  0  0  
1  1  1  1  1  1  0  1  1  0  1  0  1  0  1  0  0  1  1  1  0  0  0  1  1  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  0  1  1  0  0  1  1  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  0  1  1  1  1  1  1  0  0  1  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  0  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  0  
1  1  1  1  0  1  1  1  0  1  1  1  1  1  1  0  0  0  1  0  1  1  0  0  1  1  1  1  0  1  
0  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  1  1  0  0  1  1  1  0  1  1  
1  1  1  1  0  1  1  0  1  0  0  1  1  0  1  0  0  0  1  1  0  0  0  0  0  0  0  1  1  0  
1  0  0  0  0  0  0  0  0  0  0  1  1  0  1  0  0  0  0  0  0  0  0  1  1  0  0  0  1  1  
1  0  1  1  0  0  1  0  1  1  1  1  1  1  0  1  0  0  1  1  1  0  0  0  1  0  0  1  1  0  
0  1  1  1  1  1  0  0  1  1  0  1  0  1  0  0  0  0  1  0  1  1  0  0  0  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  
1  1  1  1  0  0  1  0  0  0  1  1  0  1  1  1  0  0  1  1  1  1  0  0  1  0  1  1  0  1  
0  1  1  1  1  1  0  0  1  1  1  1  1  0  0  0  1  1  1  0  1  0  1  1  1  0  0  0  0  1  
0  1  1  1  0  1  1  0  1  1  0  1  1  0  1  0  1  1  1  1  0  0  0  0  1  0  0  0  1  0  
0  0  1  0  0  0  0  0  0  0  1  0  0  1  0  1  0  0  0  0  0  0  0  0  1  1  0  1  0  0  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  1  0  1  1  
0  1  0  0  0  1  1  1  1  1  1  0  0  0  0  0  0  0  1  1  1  0  0  0  1  0  1  0  0  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  1  1  1  0  
1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  1  1  1  1  0  0  1  1  0  1  0  1  
1  1  1  1  0  1  1  1  1  1  0  1  1  1  1  1  1  1  1  0  1  1  1  1  1  0  1  0  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  1  0  1  0  0  
1  0  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  0  1  1  0  1  0  1  0  0  1  0  1  
0  1  1  1  0  0  1  1  1  0  0  0  0  0  1  0  1  0  0  0  0  0  0  1  0  0  0  0  0  0  
1  0  1  0  0  0  1  1  0  1  1  1  1  1  0  0  1  0  1  0  0  1  0  1  0  0  1  0  1  0  
1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  0  1  1  1  1  0  0  0  0  1  
0  0  1  1  0  0  0  0  1  1  1  1  1  1  0  0  0  0  0  0  1  0  0  1  1  0  0  0  0  0  
0  0  1  1  0  1  1  0  1  1  1  1  1  1  0  0  0  1  1  0  1  0  0  1  1  0  0  0  0  1  
1  0  1  1  0  1  0  0  0  1  1  1  1  1  1  1  0  0  0  0  0  0  1  0  1  1  0  1  0  1  
1  0  1  1  0  0  0  0  1  1  1  1  1  0  1  1  1  0  1  0  0  1  1  1  1  0  1  1  0  1  
0  1  1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  0  1  1  
1  1  1  1  0  1  0  0  1  1  0  1  1  0  1  0  1  1  0  1  1  0  1  0  1  0  0  1  0  0  
0  1  1  1  0  1  1  0  1  1  0  1  1  1  1  0  0  0  1  0  1  0  0  0  0  0  0  0  0  0  
1  0  0  0  1  0  1  0  1  0  1  1  0  1  1  0  0  0  0  0  1  1  0  0  1  0  0  0  1  0  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  
1  1  1  1  1  1  1  0  1  0  1  1  1  0  1  1  1  1  1  1  1  0  1  0  1  0  1  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  0  1  1  1  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  0  1  0  0  
0  0  1  1  1  0  1  1  0  1  1  1  1  1  0  0  0  0  1  0  0  0  0  0  1  0  0  0  0  0  
1  1  1  0  1  1  0  0  1  0  1  1  1  0  1  1  1  1  1  0  1  0  0  0  1  0  1  1  0  0  
0  1  1  0  0  0  1  0  1  1  1  1  1  1  0  0  0  0  0  0  0  0  1  0  0  0  0  1  1  0  
1  0  1  1  0  1  1  0  1  1  1  1  1  1  0  0  0  1  1  1  1  0  1  0  0  0  1  0  0  0  
0  1  0  1  0  1  0  0  0  0  1  0  1  0  1  0  0  0  1  0  0  0  0  0  1  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  0  0  0  1  0  1  0  0  1  
1  1  1  1  1  1  1  0  0  1  1  1  1  1  0  0  0  0  1  0  1  1  1  1  1  0  0  0  1  0  
1  0  1  1  0  0  0  0  0  1  0  0  1  0  1  0  0  0  1  1  0  0  0  0  1  0  0  0  0  1  
1  0  1  0  0  0  1  1  0  1  1  1  0  1  1  0  1  1  0  1  1  0  0  0  1  0  0  1  0  1  
1  1  1  1  0  1  1  0  1  1  1  1  1  1  1  1  0  0  0  1  0  1  1  1  1  0  0  0  0  1  
1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  0  1  1  
1  0  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  1  0  1  1  1  1  0  0  0  0  1  1  
1  0  1  1  0  1  0  1  1  1  1  1  1  0  0  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  
1  1  1  1  1  1  1  0  1  1  1  1  1  0  0  0  0  0  1  0  1  0  0  0  1  0  0  0  0  1  
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  0  1  
1  1  1  0  1  1  1  0  0  0  1  1  1  0  1  1  0  0  0  0  1  0  0  0  1  0  0  0  0  1  
0  1  1  1  0  0  0  0  1  1  0  1  1  1  0  0  0  1  1  0  0  1  0  0  1  0  0  1  0  1  
0  0  1  1  1  1  1  0  1  0  1  1  1  1  1  1  1  1  0  0  1  0  0  0  0  0  0  0  1  0  
0  1  0  0  0  0  0  0  0  0  0  0  0  1  1  0  1  1  0  0  1  0  0  1  0  0  0  0  0  0  
1  1  1  1  1  1  0  0  0  0  0  1  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
1  1  1  1  1  0  0  1  1  0  1  1  0  0  0  0  0  0  1  0  1  0  0  0  1  0  1  1  0  1  
1  0  1  1  0  1  0  0  1  1  0  1  1  1  1  0  1  0  1  0  0  1  0  0  1  0  1  0  0  1  
1  1  0  1  0  0  0  0  1  0  1  1  1  1  1  0  0  1  0  1  0  1  0  1  0  0  0  0  0  0  
1  0  1  1  0  1  1  0  1  1  0  1  1  0  0  0  0  0  0  1  0  0  0  1  1  1  0  0  0  0  
1  1  1  1  0  1  1  0  0  1  0  1  1  0  1  1  1  0  1  0  1  1  0  0  1  0  1  0  0  1  
1  1  1  1  1  1  1  0  1  0  0  1  1  1  0  0  1  1  1  1  0  1  0  0  1  0  0  0  0  1  
0  0  1  1  1  1  1  0  1  1  0  1  1  1  1  0  0  0  1  0  1  1  1  0  1  0  0  1  1  1  
0  0  0  0  0  1  1  0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  
0  0  0  0  0  0  0  0  0  1  1  1  1  0  0  1  1  1  1  1  0  1  1  1  1  0  1  0  1  0  
1  1  1  0  1  1  1  1  0  0  1  1  1  1  1  1  1  0  1  0  1  1  1  0  1  0  1  0  0  1  
1  0  1  1  1  1  1  0  1  1  1  1  1  1  0  1  1  1  1  0  1  1  0  0  1  0  0  0  0  0  
0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  
0  0  1  1  1  1  1  0  1  1  1  1  1  0  0  0  0  0  0  0  0  0  1  0  1  0  0  0  0  1  
1  1  0  1  0  1  0  1  1  1  1  0  0  1  1  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  
1  0  1  1  1  1  1  0  1  1  0  0  0  0  0  0  1  1  1  1  0  0  0  0  1  1  0  0  0  1  
1  0  0  1  0  0  1  0  1  1  0  1  1  1  0  1  0  0  0  0  1  0  0  0  1  0  0  0  1  0  
0  0  1  1  0  0  0  0  1  0  0  0  1  0  1  0  0  0  1  0  0  0  0  0  1  0  0  0  0  1  
1  1  1  0  0  0  1  0  0  0  1  0  0  0  0  0  0  0  1  0  0  1  0  0  0  0  1  0  0  0  



実行結果

かなり食い違う。しかし、もっともらしい印象もある。





[ 項目反応理論 by F.B.Baker and S.-H.Kim( IRTPET ) ]

ファイル名:C:\My_Programs\Toolbox\項目反応理論入門データ\gaku1-30.dat

サンプル数 =     226


 item   1
intercept=   1.0693
slope=   0.5245
a (discrimination) =   0.5245
b (difficulty) =  -2.0387
chi-square=   6.3265
d.f.=    8


 item   2
intercept=   0.8953
slope=   0.4362
a (discrimination) =   0.4362
b (difficulty) =  -2.0523
chi-square=   8.5326
d.f.=    8


 item   3
intercept=   2.0995
slope=   0.6808
a (discrimination) =   0.6808
b (difficulty) =  -3.0840
chi-square=   2.3783
d.f.=    8


 item   4
intercept=   1.7417
slope=   0.6660
a (discrimination) =   0.6660
b (difficulty) =  -2.6151
chi-square=   4.1265
d.f.=    8


 item   5
intercept=   0.3764
slope=   0.4797
a (discrimination) =   0.4797
b (difficulty) =  -0.7845
chi-square=   6.7664
d.f.=    8


 item   6
intercept=   1.4696
slope=   0.7027
a (discrimination) =   0.7027
b (difficulty) =  -2.0914
chi-square=   9.8749
d.f.=    8


 item   7
intercept=   2.0262
slope=   0.8669
a (discrimination) =   0.8669
b (difficulty) =  -2.3373
chi-square=   4.3151
d.f.=    8


 item   8
intercept=  -0.7171
slope=   0.6843
a (discrimination) =   0.6843
b (difficulty) =   1.0479
chi-square=   5.5541
d.f.=    8


 item   9
intercept=   2.1126
slope=   0.8707
a (discrimination) =   0.8707
b (difficulty) =  -2.4263
chi-square=   4.3667
d.f.=    8


 item  10
intercept=   1.1868
slope=   0.5550
a (discrimination) =   0.5550
b (difficulty) =  -2.1382
chi-square=  19.1833
d.f.=    8


 item  11
intercept=   1.2262
slope=   0.5218
a (discrimination) =   0.5218
b (difficulty) =  -2.3500
chi-square=   5.8651
d.f.=    8


 item  12
intercept=   2.8287
slope=   1.0596
a (discrimination) =   1.0596
b (difficulty) =  -2.6697
chi-square=   8.1197
d.f.=    8


 item  13
intercept=   2.5498
slope=   0.8848
a (discrimination) =   0.8848
b (difficulty) =  -2.8819
chi-square=  10.7184
d.f.=    8


 item  14
intercept=   0.8531
slope=   0.7043
a (discrimination) =   0.7043
b (difficulty) =  -1.2114
chi-square=   7.8854
d.f.=    8


 item  15
intercept=   0.9080
slope=   0.7137
a (discrimination) =   0.7137
b (difficulty) =  -1.2722
chi-square=  12.0859
d.f.=    8


 item  16
intercept=   0.1354
slope=   0.7543
a (discrimination) =   0.7543
b (difficulty) =  -0.1795
chi-square=   5.8722
d.f.=    8


 item  17
intercept=  -0.5197
slope=   0.6504
a (discrimination) =   0.6504
b (difficulty) =   0.7990
chi-square=   9.9868
d.f.=    8


 item  18
intercept=  -0.9822
slope=   0.6896
a (discrimination) =   0.6896
b (difficulty) =   1.4243
chi-square=   7.3454
d.f.=    8


 item  19
intercept=   1.0764
slope=   0.6718
a (discrimination) =   0.6718
b (difficulty) =  -1.6023
chi-square=   9.4465
d.f.=    8


 item  20
intercept=  -0.2286
slope=   0.5476
a (discrimination) =   0.5476
b (difficulty) =   0.4175
chi-square=   6.2059
d.f.=    8


 item  21
intercept=   0.5205
slope=   0.7810
a (discrimination) =   0.7810
b (difficulty) =  -0.6664
chi-square=   8.4482
d.f.=    8


 item  22
intercept=   0.8702
slope=   0.7548
a (discrimination) =   0.7548
b (difficulty) =  -1.1528
chi-square=  11.6412
d.f.=    8


 item  23
intercept=  -0.0445
slope=   0.8769
a (discrimination) =   0.8769
b (difficulty) =   0.0507
chi-square=   6.5764
d.f.=    8


 item  24
intercept=   0.0417
slope=   0.5467
a (discrimination) =   0.5467
b (difficulty) =  -0.0763
chi-square=  24.8556
d.f.=    8


 item  25
intercept=   2.0656
slope=   0.6895
a (discrimination) =   0.6895
b (difficulty) =  -2.9958
chi-square=   3.3952
d.f.=    8


 item  26
intercept=  -1.4381
slope=   0.5352
a (discrimination) =   0.5352
b (difficulty) =   2.6870
chi-square=   4.7227
d.f.=    8


 item  27
intercept=  -0.6702
slope=   0.6832
a (discrimination) =   0.6832
b (difficulty) =   0.9809
chi-square=  19.2514
d.f.=    8


 item  28
intercept=  -0.3919
slope=   0.4705
a (discrimination) =   0.4705
b (difficulty) =   0.8330
chi-square=   0.5933
d.f.=    8


 item  29
intercept=  -0.9487
slope=   0.6749
a (discrimination) =   0.6749
b (difficulty) =   1.4058
chi-square=  10.4817
d.f.=    8


 item  30
intercept=   0.8416
slope=   0.6685
a (discrimination) =   0.6685
b (difficulty) =  -1.2589
chi-square=   4.5815
d.f.=    8

[ Job Information ]
Date =2005/04/13 --- 2005/04/13
Time =13:58:29 --- 13:58:29



スレッド表示 著者別表示 日付順表示 トップページ

ここは心理学研究の基礎メーリングリストに投稿された過去の記事を掲載しているページです。